Human embryonic stem cells show low-grade microsatellite instability.

نویسندگان

  • Ha Thi Nguyen
  • Christina Markouli
  • Mieke Geens
  • Lise Barbé
  • Karen Sermon
  • Claudia Spits
چکیده

It is well known that human embryonic stem cells (hESCs) frequently acquire recurrent chromosomal abnormalities, very reminiscent of those found in cancerous cells. Given the parallels between cancer and stem cell biology, we set out to investigate the occurrence of a common form of genome instability in tumors, namely microsatellite instability (MSI), in hESCs. MSI is caused by a deficiency in mismatch repair (MMR) genes, which leads to the accumulation of mutations during DNA replication. In this study, we analyzed up to 122 microsatellites in a total of 10 hESC lines, for 1-11 different passages, ranging from passage 7 to passage 334. In two lines, this revealed that two microsatellites had altered allelic patterns. Small-pool PCR for several microsatellites and testing of the Bethesda panel microsatellites (commonly used in cancer studies) revealed that, whilst MSI is common in all tested lines, it occurs at a very low and variable frequency, ranging from ∼1 to 20% of the total number of alleles. In cancerous cells, MSI leads to multiple large shifts in allele sizes within the majority of the cells, while hESCs show small changes in a minority of the cells. Since these genetic alterations do not consistently take over the culture, we assume that they are not concurrent with a selective advantage as it is in tumors. Finally, the MMR genes showed a very variable gene expression that could not be correlated with the variable (low) levels of MSI in the different hESC lines.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dnmt1 deficiency leads to enhanced microsatellite instability in mouse embryonic stem cells.

DNA hypomethylation is frequently seen in cancer and imparts genomic instability in mouse models and some tissue culture systems. However, the effects of genomic DNA hypomethylation on mutation rates are still elusive. We have developed a model system to analyze the effects of DNA methyltransferase 1 (Dnmt1) deficiency on DNA mismatch repair (MMR) in mouse embryonic stem (ES) cells. We generate...

متن کامل

Differentiation of human embryonic stem cells into neurons

Human embryonic stem (ES) cells are undifferentiated pluripotent cells derived from the inner cell mass of blastocyst stage embryos. These unique cell lines have the potential to form virtually any cell type in the body and can be propagated in vitro indefinitely in an undifferentiated state. These cells are capable of forming embryoid bodies (EB) that contain cells from all three embryonic lin...

متن کامل

Differentiation of human embryonic stem cells into neurons

Human embryonic stem (ES) cells are undifferentiated pluripotent cells derived from the inner cell mass of blastocyst stage embryos. These unique cell lines have the potential to form virtually any cell type in the body and can be propagated in vitro indefinitely in an undifferentiated state. These cells are capable of forming embryoid bodies (EB) that contain cells from all three embryonic lin...

متن کامل

DNA Repair in Human Pluripotent Stem Cells Is Distinct from That in Non-Pluripotent Human Cells

The potential for human disease treatment using human pluripotent stem cells, including embryonic stem cells and induced pluripotent stem cells (iPSCs), also carries the risk of added genomic instability. Genomic instability is most often linked to DNA repair deficiencies, which indicates that screening/characterization of possible repair deficiencies in pluripotent human stem cells should be a...

متن کامل

Extract of mouse embryonic stem cells induces the expression of pluripotency genes in human adipose tissue-derived stem cells

Objective(s): In some previous studies, the extract of embryonic carcinoma cells (ECCs) and embryonic stem cells (ESCs) have been used to reprogram somatic cells to more dedifferentiated state. The aim of this study was to investigate the effect of mouse ESCs extract on the expression of some pluripotency markers in human adipose tissue-derived stem cells (ADSCs). Materials and Methods: Human A...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular human reproduction

دوره 20 10  شماره 

صفحات  -

تاریخ انتشار 2014